
SparkFS

David Pilling
a
~

Archimedes Software

)

© Copyright David Pilling 1991.

All Rights Reserved.

No part of this product may be reproduced in whole or part by any means
without the written permission of the publ isher. Unauthorised hiring, renti ng,
loaning, public performance or broadcasting of th is product or its constituent
parts is prohibited.

SparkFS was written using Acorn's ANSI C compiler release 4, and the
Objasm assembler.

This manual was produced using the Ovation DTP program.

My thanks to everyone who helped me with SparkFS.

(4th . printing for version 1 .22, 24th February 1993)

If you have any comments , suggestions, bug reports or complaints or would
like further copies of this program or details of the many other pieces of
software available for the Archimedes , please write to;

David Pilling
P.O. Box 22,
Thornton Cleveleys,
Blackpool.
FY5 1 LR.
United Kingdom.

From time to time enhanced versions of programs will appear. You can
upgrade your copy to the latest one by sending your original disc with return
postage to the above address.

Contents

1. Introduction
2. Using SparkFS 3

3. SparkFS Filer 5

4. SparkFS Module 15

5. Spark 19

6. Zip 21

7. Tar 22

8. Zoo 23

9. ARJ 23

10. LZH 23

11. PackdDir 23

12. McStuffit 24

Appendix 1 Archive types 25

Appendix 2 Error messages 26

Appendix 3 SWI calls 28

Bibliography

/

SparkFS Introduction

1. Introduction
SparkFS, is a universal modular archive filing system for RISC OS. It allows
access to all the popular archive file types, via a filing system interface.

Archive files
At the mention of 'archive', many peoples minds turn to backing up hard
discs. Whilst the archive files SparkFS handles can be used to help do this,
their main use is in communications, software distribution and backing up .
projects. An 'archive file' or 'archive', is a file which contains other files and
directories. In communications it is much easier to transfer one file than •
many. So the archive file is widely used, and life would be difficult without it.

When files are put into archives, it is possible to use various algorithms to
reduce their size. Such data compression works by locating redundancies in
the data and coding them more efficiently. In communications, time is
money, and it is more attractive to transfer a small file than a big one.

For certain types of data e.g. pictures and text, the space savings produced
by data compression are so great, that it becomes worthwhile to only ever
keep the files in compressed form even on disc. To cope with this situation ,
yet another type of program has evolved - the compressed filing system.

SparkFS, fulfils the roles of a compressed filing system, and a file archiver in
one program.

Many different formats have appeared for archives. Often these are
motivated by the special features of different computers , or improvements in
compression techniques. SparkFS will cope with most of the file types in
current use. Some of them are, Spark and ArcFS files from the Archimedes,
Packit, Stuffit and Compactor from the Apple Macintosh, ARJ, Zip, Zoo,
PKarc and SEAarc from the IBM PC, UNIX and many other systems and
Compress and Tar from UNIX.

Because a program that can handle every file type is likely to be big,
SparkFS has been made modular - you only need to install the modules for
the archive types you want to use. Some users will want to handle files from
other computers most of'. the time, they can use the full range of features of
SparkFS. However, other users whose work is confined to the Archimedes,
can turn SparkFS into a compact system. Extra modules can be produced as
new archive files appear.

Often archive files will be transferred , using channels that are designed for
text only communications. To get binary 8 bit data through such 7 bit paths,
a layer of binary to text coding is applied to the files . SparkFS understands
many of these files, including uucode, atob, FCET, boo, and HQX.

1

Introduction SparkFS

Getting started
SparkFS is supplied on a single floppy disc. You should make a backup
copy of this for day to day use. A text file called ReadMe is supplied on the
disc and notes new features and additions to the program. SparkFS can be
installed on your hard disc or another floppy by just dragging the !SparkFS
application to the desired destination. SparkFS is run by double clicking on
the !SparkFS icon, it will then install on the icon bar. Archives can be
recognised by the characteristic Spark sprite (a lightning flash) , and can be
opened by double clicking, or dragging to the icon bar icon. Opening an
archive will make a desktop filer window appear showing the contents. Files
in this can be used just like those in normal disc windows.

To use SparkFS, you need to have version 3.75 (or greater) of the shared C
library in the modules subdirectory of your !System directory (usually on
Applications disc 1). If this is not present, the program will fail to run and give
an error message. A copy of Glib version 3. 75 is included on this disc. To
update your System resources (including the Glib module), you should
insert the disc, open a window on it and double click the Sysmerge
application and follow any instructions that are issued. This will ensure that
both SparkFS and other new programs will run correctly.

Overview
SparkFS consists of several programs.

First the filer which sits on the icon bar. This is loaded when you double click
on the !SparkFS icon. The filer, provides desktop control of the filing system ,
allowing new archives to be created, and old ones to be converted to
different types. It also supports ASCII to binary conversion.

Secondly, the module SparkFS. This is the core filing system. It provides
support such as memory management for the archive modules. SparkFS,
knows nothing about individual archive formats. All such intelligence, is in
the archive modules. This means that different copies of SparkFS may read
and write completely different file types.

Finally, the archive modules. These live in the directory !SparkFS.Modules.
The required ones will be automatically loaded when the filer is started up.

2

SparkFS Introduction

2. Using SparkFS

You start using SparkFS by loading it. This can be done by double clicking
on the !SparkFS icon, by double clicking on an archive file or directory, or by
running SparkFS from a !Boot file of some kind.

After one of these actions, SparkFS will appear on the left of the icon bar. To
begin, you will need some archives to use SparkFS on. If you already have.
some, then you can double click them , and SparkFS will open a window •
showing their contents - the process is just like clicking on a directory icon.

Files in the archive can then be used in the normal way , double clicked to
run , or dragged to applications.

If you don't have any archives, then you need to create one. To do th is, click
on the SparkFS icon on the icon bar with the Select button. A window like
this one will pop-up.

Save as:

~
I newtarcj I rnKJ
-:$:- Spark file
<>spark dir
0PK arc
(>Tar
<)Zip

The buttons down the left allow you to choose the type of
archive.

Different types of archive are suitable for different uses.
For example Spark dir (short for directory) archives are
best for storing large files which you wish to update
frequently - typically large DTP documents.

File archives are better for storing small files, or files that
are not updated often. With experience you will work out
which types of archive are best for your work.

Tar and PK arc files are only of interest if you want to swap files with UNIX or
PC computers. Zip files can be exchanged with many other computers , but
are perfectly useable on Acorn computers. They or Spark files should be
your standard file archive.

The window is like a standard Save box. You can type in a file name, and
drag the icon at the top to a normal desktop file viewer window. When you
do that the archive will be created, and a window showing the contents of it
opened.

So to create an archive, click on the icon bar icon with Select, click on the
button for the type of archive you want to create, enter it's name, and then
drag the Spark icon to where on disc you want your archive creating. An
empty filer window will appear. This is a bit like creating a directory folder.

3

Introduction SparkFS

Once you have created an archive , files can be put into it in all the same
ways that files are normally saved to disc. For example by dragging from
elsewhere on disc, dragging from the save box of an application , or by key­
press. Files can be loaded from archives , by double clicking , or dragging .

As files are loaded from archives, they will be automatically decompressed,
and as they are saved, they will be compressed . The data compression , is
therefore completely transparent.

Another use of SparkFS is reading archives from other machines. Suppose
you have a disc with a PC Zip file on , or have downloaded one from another
computer via modem. It will probably have file type data, so you can't double
click it to open it. To look inside it, drag it onto the icon bar icon. If it can be
handled, a filer window will open , it will also have its type set correctly. Files
can now be dragged into other programs from inside the archive.

If the fi le from the other computer had been binary to text encoded, the
procedure would be the same, except the Filer would automatically convert
the text file to binary before trying to open it as an archive.

Theory
Although there is still intense competition for better practical methods of data
compression , there is a complete mathematical theory of the subject. It
makes certain predictions which provide useful rules of thumb. For example ,
there is a limit to how much data can be compressed. The practical effect of
this, is that there is usually little point trying to compress something that is
already compressed. Often a second attempted compression will expand
data.

Secondly, compressed data becomes more random. An uncompressed file
may be readable in Edit, whilst a compressed one is so much "alphabet
soup". More seriously, completely random data won't compress. That means
it will always be possible to find files which don't compress well or at all.

To cope with these situations often the option of a compression method of
"No Compression" is offered.

4

SparkFS Filer SparkFS

3. SparkFS Filer
Introduction
The filer provides easy control of SparkFS from the desktop. When you
double click on !SparkFS, the filer program is run, and installs itself on the
left of the icon bar. Various functions can be accessed by dragging files onto
the icon bar, or popping up a menu. The menu is opened by pressing the
mouse menu button over the icon bar icon.

SparkFS
Info

Info
¢ This leads to a dialogue box giving information about

the version number of this copy of SparkFS. The
Hew archive¢ version number should be quoted in any
Choices.•• correspondence, and is useful to find out if you have

,__n_u_it ___ _,¢ the latest release of the program.

Save as: New Archive

! newt arc] I ffiKJ
<>Spark file
<$>Spark dir
·(/PK arc
0Tar

This points to a standard save dialogue box which is
used to create new archives. To create a new archive,
simply drag the archive icon to where you want the
new archive to appear. It will be created, and a window
will be opened on the contents of the archive.
The buttons allow you to choose the type of archive to
be created. The available types will depend on the
currently installed archive modules.

Choices
Choosing this will display a large dialogue box which allows various aspects
of SparkFS to be configured. Each section of it will now be described.

SParkFS

~
Me11ory Max 284BK _______ _

Cur 127K Cl
Min 118K • .~

UUcode --~ -;JM~od!!!_UJ!le-==::::::::::i

rZ\:eO~RLF ~:~ DD -~if Type: I Spark file I~
I~ A D Method:! Co11press 12 I ~ ~ LF vLFCR McStuffit · ·
rHull char. l PackdDir D r; TeMp I
l% SPC 0 ~ Spark @) ~ <Wi11p$ScrapDir> I~

Archive-----~

Split DCillIJ Tar @) 1} Auto quitD ll'f1'lll

5

SparkFS

Archive ----------.

Type: I Spa1·k dir l@j
Met hod: I Cof!lpress 12 I @j

T11Pe
Spark file
Spark dir
PK arc

I Tar
Zip

Method
Ho cofllpt•ession
Crunch 12
Squash

I Cof!lpress 12
Cofllpress 16

- Module
ARJ [§] .
Lzh [§]
Mc Stuff it [§]
PackdDir [§] .
Spark [§] .
Tar [§] .

~
{}

Tefllp ----------,
I ADFS: : 93_59_Mon. $ I @j

Save as:

parkFS, TefllpJI @KJ

SparkFS Filer

Archive type J

This allows the current archive type and
compression format to be chosen. Clicking on
the two right pointing arrows will produce
these two menus.

Type
Sets the current archive type. What appears
on the sub menu, depends on which archive
modules are loaded. Only archive types
which can be written will appear. The current
archive format will be selected when the new
archive dialogue box is opened.

Method
Sets the current compression method for the
current archive type. Only compression types
which can be used for writing will appear.
This option is relevant when files are being
added to archives. The compression method
is set independently for each archive type.

Module
This window shows the available archive
modules in the !SparkFS.Modules directory .
The button to the right allows an archive
module to be installed or removed from
memory. This can save lots of memory. For
example if you are certain you will never want
to open a Macintosh archive, then you can
remove (or even delete) the McStuffit module .
The same applies to the other modules. For
many users it is realistic to just have the
Spark module installed.

Set temp
This allows the directory used by SparkFS for
temporary files to be changed. To do this
click on the arrow and drag the icon from the
resulting save box to the window of the
appropriate directory.

6

SparkFS Filer

~
Mefl!Ot' Y

Max 652K--•
Cur 159K D

_Min 146K •

Memory

SparkFS

I

This allows you to control how much memory SparkFS has, and how much it
can possibly claim. As usual the more memory SparkFS has, the faster it will
work, however, there will then be less memory for other applications.
Memory usage is changed by dragging the red sliders with the mouse. The
top one 'Max' controls the maximum amount of memory SparkFS will use'.
The bottom one 'Min' sets the least memory SparkFS will use.

The maximum value is useful , because it stops SparkFS from using up al l
your memory, instead you may prefer to force·temporary files out to disc.
The minimum value prevents other programs from grabbing all the memory
in the machine, and then trying to access a file from SparkFS. Unfortunately,
such programs do exist, so it is necessary to permanently allocate some
memory to SparkFS. This particularly applies to the *copy command on
RISC OS 2 (which is used when files are dragged around the desktop).

Memory management is discussed in more technical terms in section 4.

It should be noted that the maximum value, is just that. There is no
guarantee that SparkFS will use the maximum amount of memory or that it
will be able to . It may be that there is no free memory left when SparkFS
tries to extend its usage in which case the maximum value will not be
reached. The only certainties, are that SparkFS will claim the minimum
setting amount of memory, that it will always have this much memory at its
disposal and that it will never use more than the maximum setting.

To give an obvious example, if the maximum value is set to 4096K (4Mb.) on
a computer with only 2048K (2Mb.) of RAM, it should not be surprising if
SparkFS runs out of memory before it reaches 4096K. More realistically , the
amount of free memory on any machine varies, often reaching zero during
the use of the *copy command.

7

SparkFS

- UUcode ----....
EOL seq.­
~CR <)CRLF
<) LF <)LFCR

rHull char. l
l~SPC <) ~
Split I§] [ill!]

Save

Auto quit 1§1

Quit
Filer
FS too

SparkFS Filer

UUcode choices
Controls the settings for the uucoder. Eol seq, is the
set of characters used to terminate each line in a
uucoded file. Null char, is the character used to
represent code 0. If the line split option is selected,
uucoded files will not exceed the number of lines
entered. Instead the uucoded file will be split into a
number of smaller files.

Save Choices
Clicking on Save allows all the configurable options
in SparkFS to be saved, so that the next time it is
run , they will be reset.

Auto Quit
When selected this will make the filer terminate
shortly after being run. The idea is that you can run
SparkFS to load modules and so on and then it quits
saving space. Obviously once Auto Quit has been
selected and the choices have been saved it is
impossible to ever get back to the choices window.
To allow this , if the ALT key is held down whilst
SparkFS is run , the Auto Quit feature will not take
effect.

A similar effect can be obtained by putting -quit on
the command line used to run !SparkFS. For
example , you can make a copy of the !Run file,
called !Install in which the final line has a -quit
added. Then something like Run !SparkFS.!lnstall
will install the modules, but not the filer.

Quit

If Quit from the main menu is selected the Filer will
terminate . However, SparkFS and all the archive
modules will remain active. This can be a useful way
of saving memory. The Filer is only vital for creating
archives. By using 'FS too' on the sub menu , the
entire system can be quit. This will remove SparkFS
and all the archive modules from memory.

8

SparkFS Filer SparkFS

File Conversion
The SparkFS Filer, manages a number of file conversions. To convert a file ,
hold down the SHIFT key, and drag the file to the icon bar icon. The
available conversions depend on the object type.

Save as:

~.$.Ovn.DTPJI [ill
-%- Spark file
0PC arc file

Save as:

~ .
~lFOHTa1uu~1: I [ill
-%- UUcode
OBtoA
0FCET
0Boo
()Spark dir

Save as:

~ .
[E23ZPaiuueJI [ill
-%- UUcode
OBtoA
0FCET
0Boo

Converting Spark directory archives.
These can be converted into either Spark files or PC
(SEA or PKarc type files). The Spark icon should be
dragged to where you want the new file to go. The
conversion type is chosen by clicking on the button cit
your choice.

Converting Spark and ArcFS file archives
These can be converted into Spark directories, or turned
into a text files in a number of ways . UUcode is the
standard UNIX method for converting binary files to text.
BtoA is a more efficient method also common in UNIX.
In Viewdata terminology, BtoA is sometimes called
CET +. FCET is another method used by Viewdata
systems. Finally Boo is from the Kermit world .

In addition, ArcFS archives can be converted into Spark
or PC arc files.

Converting any archive file.
Similar to Spark files, except they can't be converted into
Spark directories .

9

SparkFS

Save as:

~
~.RawData1zJI @I]
4> Cofllpress
()uucode
()BtoA
()FCET
()Boo
()DeBoo

Save as :

! newiarcl I @I]
()Spark file
% Spark dir

,r

()PK arc
()Tar

SparkFS Fi ler

Converting any file
These options can be applied to any file

Compress, is the standard UNIX method for squashing
files. A compressed file , will have the same attributes,
date stamp etc. as the uncompressed version but will
usually have a 'z' tacked onto the end of its name.
Compress files can be expanded by dropping them onto
the icon bar icon (without holding down shift) . The
number of bits used for Compress, will be the same as
set for Spark files.

Because Boo files can't be automatically recognised ,
when you want to convert a Boo file back to binary form ,
the DeBoo option must be used. The original file name,
is contained in the Boo file and will be displayed.

Converting Directories and Applications
The contents of a directory or an entire application can
be converted into an archive. As usual , hold down
SHIFT and drop the directory on the icon bar icon.

In old versions of SparkFS when an application was
converted, an archive was created and the whole
application copied into the root directory. This is now
only the behaviour if the archive name does not start
with a !. If it does begin with a ! the contents of the
application directory will be copied into the root of the
archive.

Impression documents are a common form of application directory which it is
useful to archive.

The radio buttons allow you to choose the sort of archive the directory is put
into.

SparkFS Filer SparkFS

Passwords and global archive handling.
Dropping an archive file on the icon bar whilst holding down the CONTROL
key, provides useful information about it, and may let a password be applied.

I PIC_ARC
[liill Type: I Spark file

Size: I 129 Kbytes
Date: I 17:41:49 94-Dec-92

<f;
()

For archives that can be password
protected, this dialogue box will appear.
The password can be entered and the
method of coding set. The password will
become active after RETURN is pressed or
the type of encryption is changed.

Passwords only apply to the files written to
the archive whilst the password is set.
Files can only be read if the correct
password for them is currently set.

Hone
Garble
DES 0 Password protecting files , is not a step that

"-----------~ should be taken lightly. Once you have
used a password, it is most unlikely that

you will ever get your data back without the password. To SparkFS all files
look the same, there is no flag that identifies data as password protected or
not. If you attempt to load a file with the wrong password, usually the data
compression algorithm will detect that the data is corrupt, or the program the
file is loaded into will display rubbish.

Garble is a simple (but quick) method which originally appeared in the PC
PK and SEA arc programs.

DES is a sophisticated algorithm devised by the US NSA. It is very difficult to
break.

So suppose an archive is dropped on the icon bar, and a password entered.
At that point, the files in the archive have not changed - as stated there is no
flag that says a file is encrypted. To actually encrypt a file, it must be added
to the archive, whilst the password is set. Later it will only be possible to read
the file from the archive if the password has first been set for it.

'11C31About this archive
~ I HEWtZIP

Type: I Zip I rest I . ';:::======::::: Size: I 16 Kbytes
Date: I 95:98:22 97-Hov-92

For archives that do not support coding . A
simplified version of the window appears.
This shows the size and date stamp for the
archive, and its type.

Finally clicking on the Test button will
check that all the files in the archive can be
unpacked.

11

SparkFS SparkFS Filer

Configuration
The directory SparkFS.Config , contains a number of files that can be used to
configure SparkFS to your requirements.

Choices
A text file of the information stored by the save choices option.

Extensions
This file contains the data used to map file extensions to file types. When an
archive from a system like the PC that does not support file types is opened,
the file extensions (the group of letters after the final'.' in the file name) are
used to generate an Archimedes file type. For example, all files ending in
'.txt' will be given file type text. Because '.'cannot appear in Archimedes file
names, they are displayed as '/'. This can be useful because the process
works both ways, so you can create files with the correct names when your
archives are accessed on other systems.

The extensions file consists of a list of entries like this ;

Oxfff txt

The first line in the file, is the default type that will be used for files whose
extension is unknown, or not present. It is also possible to add to this file ,
the Macintosh type names and corresponding file types. For example;

Oxfff TEXT

No Co
Certain types of data won't compress. To save time, it is possible to tell
SparkFS not to apply compression to some file types . These file types are
put in a list in the NoCo file. For example;

~ OxFF8
Ox695
OxDDC

FF8 is the filetype given to absolute code files, mostly these will have
already been compressed using the 'squeeze' program. 695 is for GIF files
which again are already compressed. Finally DDC is the archive file type.

Note that in the NoCo and Extensions files, numbers are entered in
hexadecimal in C style notation.

At Exit
This is a file of * commands that will be executed when the SparkFS module
is RMKilled . See the *SparkFSAtExit command for more details.

12

SparkFS Filer SparkFS

The AutoRun Directory
This can contain an obey file with the same name as an archive module.
When the archive module is loaded the obey file will be executed. This
mechanism can be used to issue specific *commands to archive modules. It
provides a simple way of configuring them. For example you may have a file
called 'Zip' with *ZipUseCentralDirectory 1 in it.

ASCII Encoded Binary files
There are many ways of encoding binary files as text - uucode, boo, atoti
etc. Sometimes when you retrieve the text file , it will not be in a form suitable
for decoding. It is important to realise that these text files can be loaded into
a normal editor (e .g. Edit) and cleaned up.

For example the text file may have been split into a number of pieces, or
have extra text added by a mail system. Using your editor, you can
assemble the pieces and strip out the extraneous text.

Often these files will have as the first line, the name of the file that they
contain. It can be useful to edit this line if the contained file name is too long
or unsuitable in some other way.

13

SparkFS Filer SparkFS

14

')

t

')

,)

SparkFS SparkFS Module

4. SparkFS Module

Introduction
This module is normally located in the !SparkFS.Resources.<Country> .
directory. It is the heart of SparkFS. On one hand it provides support for the
archive modules, and on the other the interface to the rest of the computer.

Before any archives can be accessed using SparkFS, the SparkFS module
must be present in memory. You can find out if it is loaded by pressing ttie
F12 key, and typing *modules. *Help SparkFS will produce a list of the
*commands supported by SparkFS.

When an archive module is loaded, it will attempt to link itself to the SparkFS
module. This means that the SparkFS module must be present before the
archive modules are loaded.

All archive file types and compression methods are given unique numbers.
SparkFS uses these archive and compression types as parameters to its
*commands. A list of the current types is given in Appendix 1.

Memory Management
When the SparkFS module is first started, it reads the value of a variable
SparkFS$Memory. This amount of memory is then claimed from the
operating system. SparkFS will use the memory intelligently. There are two
possible uses for memory, buffering file data, which is more or less optional,
and providing work space for the compression code, which is not. This
means that the amount of memory reserved, must be big enough for the
compression code. At least 32K is needed and 64K should be a practical
minimum. SparkFS$Memory is set in the !SparkFS.!Run file.

If the memory reserved is big enough, files will be held in memory whilst they
are open. However, if there is not enough memory, they will be created
temporarily on disc. The variable Spark$Scrap is used to set where the
temporary files are put. In general, it should point at a large area of fast disc
space. Spark$Scrap is set in the Filer configuration file , and can be set from
the desktop, using the choices dialogue box.

If SparkFS$Memory, is given the value -1 , then SparkFS will use memory
from the system sprite area. Although this may seem bizarre, it offers
efficient memory management. The only snag, is if a program uses the
SNew command, which clears the system sprite area. Most RISC OS
compliant programs will not do this. However, some older ones - Hearsay 1
for example will. If you want to use such programs, then the other method of
memory management should be used.

15

SparkFS Module SparkFS

Image Files
On RISC OS 2, and most conventional operating systems, there are only two
types of object, files and directories. With RISC OS 3, Acorn invented a new
kind of object, the "image file" . An image file is a single file , that contains a
directory structure. The motivation was to allow easy access to PC partitions
on hard discs, and PC floppy discs. However it is obvious that archives are
ideal candidates for image files .

If a filing system tells RISC OS 3 that a given file type is an image file for it,
then files of that type will behave almost like directories.

The *command SparkFSlmage (see below) is used to control whether
SparkFS will register the file types of all the archive modules as images.
Usually this command is issued in the SparkFS !Run file .

Image files are a new idea, and some software may become confused by
them , so occasionally it may be useful to turn off the image FS feature.

Files are objects of type 1, directories of type 2, and image files of type 3.

lmageFSFix
This module allows applications to be stored as files (saving disc space) , but
still be used in the normal way by double clicking.

The lmageFSFix module tells the desktop that any image file whose name
begins with a ! is a directory. The desktop then treats the image file as an
application directory.

So suppose you create an archive file called !Fonts and copy into it, the
contents of your usual !Fonts directory, !Boot etc. Normally you would end
up with an archive on the desktop called !Fonts showing the Spark file flash
icon. Double clicking it would open a viewer on the contents of the archive.

However with lmageFSFix loaded the archive will appear as an application, it
will show the !Fonts icon on the desktop and will run when double clicked.

Applications can be converted to archives in the usual way by holding down
SHIFT and dragging them to the icon bar. For use with lmageFSFix, the
archive name should start with a !.

With lmageFSFix loaded, you can convert applications into archive files and
although the applications will be compressed and turned into archives, from
the desktop they will look and work as normal.

lmageFSFix is located inside !SparkFS.Resources and can be loaded from
the !SparkFS. !Run file by uncommenting the appropriate line.

16

SparkFS SparkFS Module

Paths
By default SparkFS, expects file paths to be in the following format

SparkFS#<full archive path/filename>:$.<path/filename inside archive>

In the archive filename, ':'s are replaced with '#'s

Example

cat SparkFS#SCSl##RISCiX121.$.SparkFS.FS.more_arc:$

If you are using RISC OS 3 and have enabled Image FS support, then paths
for archive files , will be just like those for ordinary files - archives behave like
directories.

The example would be ;

cat RISCiX121 .$.SparkFS.FS.more_arc

Filing System *commands
*SparkFS
Selects SparkFS as the current filing system. Only of relevance to command
line operation.

*Back
Swaps the current and previous directories.

*URD [<directory>]
Selects a directory as the current user root directory. Default is to restore the
URD to$.

*NoURD
Unsets the user root directory.

*NoDir
Unsets the current directory.

*Nolib
Unsets the current library directory.

17

SparkFS Module SparkFS

SparkFS Specific *commands

*SparkFSConvert <source> <destination> <dest. type>
Converts an archive from one type to another. Parameters are the paths to
the original and destination archives and the destination archive type.

*SparkFSFiler_OpenDir <full archive name>
Used to open a desktop filer on the root directory of an archive.

*SparkFSCreate <type> <name>
Creates a new archive with the given archive type.

*SparkFSMethod <type> <method>
Sets the compression method for a given archive type.

*SparkFSEncrypt <archive name> <method> <<password>>
Sets the encryption method and password for an archive.

*SparkFSExtension <type> <<extension>>
Sets the RISC OS file type to associate with a given file extension.

*SparkFSNoCo <type>
Tells SparkFS to not compress a given file type.

*SparkFSTruncate <length>
Sets the maximum length of displayed filenames. For RISC OS 2 file names
must not be longer than 10 characters. The command (used in the !Run file
by default) lets you specify this. <length> includes the 0 string terminator.

*SparkFSAtExit <filename>
Loads a file of commands that will be executed when the SparkFS module is
RMKilled. This is usually used to set the Run Type variables for archives.
For example, if an archive file is run whilst SparkFS is active open a window
on it, otherwise Run SparkFS and then try to open the window. This can be
seen in the default !Run and Config .AtExit files. By changing these files it is
possible to choose which archive file types when double clicked will cause
SparkFS to run.

*SparkFSlmage <110>
Usually put in the !Run file . SparkFSlmage 1 makes SparkFS attempt to
register as an image filing system and SparkFSlmage 0 deregisters it.

*SparkFSMemory <min>[K] <max>[K]
Sets the size of the min and max memory slots when using system sprite
space for memory. One possible use is to allow SparkFS to be set up
without running the filer program. Another possibility is to allow other
programs to control the memory used automatically.

18

Spark SparkFS

5. Spark
Although archive files have been going almost as long as computers . The
first archive program and file type to gain great popularity, was SEA's arc for
the IBM PC. This occurred because it was the first widely available
implementation of the LZW algorithm. LZW coding had first been used in the
UNIX compress program and offered much better compression and speed
than previous techniques like Huffman coding. SEAs version of LZW was .
called 'Crunch' - it was a combination of LZW and a much older techn iqu~

RLE (run length encoding).

LZW works by encoding repeated strings. A parameter of this technique is
how many different strings can be used, this depends on the number of bits
used for the codes. More bits give better compression , however more
memory is required for the compression and expansion process. The lowest
number of bits in common use is 12 and the greatest 16.

A variant of SEA arc was devised by Phil Katz. His PC program called
PKarc, replaced SEA's 12 bit crunch with a straight 13 bit LZW technique
called 'squashing' but retained the SEA file format.

Legal arguments between SEA and Phil Katz eventually led to the large
scale abandonment of the SEA standard and the appearance of Phil Katz's
Zip program and file. However, in 1988 the SEA format reigned supreme,
and seemed a good basis for an archive file format for the Archimedes.

The Spark file format consists of using SEA/PK arc files and adding an extra
12 bytes to each file to contain the RISC OS file attributes. The original
format did not support directories in archives. Spark files overcome this
problem by storing directories as archives within archives.

Spark programs have always allowed PC format files to be written . The only
catch is that you must be careful to use the correct compression methods
when creating files to be used with the PC programs.

Later versions of Spark, allowed not just crunch and squash, but also LZW
with a larger number of bits "compress". This is like squash Qust the same as
the UNIX compress program) but can use between 12 and 16 bits.

Spark files are a simple and effective way of archiving things on RISC OS.
They offer reasonable data compression and are compact. They are far from
ideal for fast file updating and access. In a Spark file the catalogue
information (length , type etc.) for each file is stored with it. This extended
catalogue provides the kind of robustness which is ideal for communications ,
but means there can be a long delay when an archive is first opened.

SparkFS Spark

An alternative type of file was devised for the first compressed filing system
for the Archimedes - ArcFS. ArcFS files have a central directory near the
start. This means that ArcFS archives can be opened quickly.

Storing an entire directory structure in one file, offers many advantages. In
almost all conventional filing systems some space is wasted each time a file
is created . Although a file may only have 500 bytes in, often 1000 bytes will
be allocated on disc for it. Putting everything in one file removes this waste.
For small files the saving from this source is bigger than that offered by data
compression. However, archive files are slow to update - they have to be
compacted . They are also not robust. A single error can destroy many files .

To be able to update files quickly and in a robust way, it is better to store
each file on disc separately. The Spark module supports a final type of
archive. Spark directory archives, consist of an application directory in which
many files are stored in squashed form.

These archive directories are not as efficient in disc use as Spark files , but
they are fast and robust. They can be converted to archive files . So you
might use directory archives for your work files and periodically convert them
to archive files for backup purposes.

The Spark module will read, ArcFS, PKarc, SEA arc, Spark files and
directories. It will let you write PKarc, SEAarc and Spark files and directories.
Supported compression methods are No compression (files are just stored),
12 bit Crunch, Squash, 12 and 16 bit Compress. Squeeze (Huffman coding).
12 bit Compress will offer the fastest results. All these are compatible with
Spark 2.XX. Spark 1.XX does not support Compress.

Spark$Template
This system variable points at a directory containing the files to be put in new
Spark directory archives. It can be useful if you want to use a different type
of sprite for directory archives or for utilities like 'chkspr' to be automatically
included in new archives. The directory should have the same name as the
sprites in the !Sprites file that you want renaming to have the same name as
the new archive. So if the directory is called Temp, !Sprites may contain

!temp and sm!temp. All !Sprites* (e.g. 22) files will be scanned.

*Commands
*SparkCompress <source> <destination>
Used to make UNIX compress files.

*SparkUncompress <Source> <destination>
Used to expand UNIX compress files.

20

SparkFS Zip

6. Zip

Following his legal argument with SEA, Phil Katz developed a new file format
and archive program - Zip. Zip is in many ways the current world standard
archive format. Programs are available to read and write Zip files on all the
common systems.

The Zip module can write Zip files as well as read them. Zip files can be .
extended to hold extra information, the Zips created by the Zip module •
contain the RISC OS file attributes, yet can still be read by PC and UNIX Zip
programs.

Currently two compression methods are offered. Shrinking is an enhanced
form of LZ.W. Deflation is a more powerful (but slower) technique (see the
section on LZH).

Deflation is a development of 'Implosion'. In December 1992, Phil Katz
released a version of Zip which supported Deflation, and because it gives
superior results to Implosion, Deflation then became the preferred technique
to use for Zip files.

Notice this implies that many of the installed copies of Zip or compatible
programs will not be able to handle files that use Deflation.

*Commands
*ZipUseCentralDirectory <110>

When used with a parameter of 1, this will make the Zip module use the Zip
central directory on loading Zip files. The main advantage is that this is much
quicker than scanning the distributed directory (or file headers). The
disadvantage is that the Central directory must be both present and in
agreement with the rest of the file . Using 0 for the parameter will revert to the
extended catalogue.

In other words if you have problems with some Zip files it may be worth
turning off the use of central directories.

21

Tar SparkFS

7. Tar

Tar is probably the oldest archive format still in common use. The name
shows this deriving from Tape ARchive. Files stored in Tar archives, are not
compressed at all. Usually the files are a number of 512 byte blocks long.
Each file has a 512 byte header followed by as many 512 byte blocks as are
necessary to store it. This gives Tar files their characteristic appearance
when loaded into an editor - large areas of null characters.

Because there is no compression of the data in Tar files . It is common to
squash a complete Tar with the UNIX Compress program. Since data
compression is often more effective on larger files this will give better results
than programs which store the data for each file in compressed form .
However, it loses the advantage of random access to files.

The often encountered uucoded compressed Tar file (filename.tar.z.uue) will
be automatically decoded, uncompressed and opened when dropped on the
icon bar. Usually compressed Tar files have names of the form
'filename.tar.z', but sometimes this will be shortened to 'filename.tzr'

Method
Unix
Arc tar

I Co111111a

Ordinary UNIX Tar files do not retain RISC OS file attributes. It
is possible to use some of the usual header for this purpose.
Various methods have been proposed for doing this. They are
shown on the Compression method menu when Tar is the
current archive type.

Finally the method 'comma' involves tacking a comma followed by the RISC
OS filetype onto the end of the file name. This has the considerable
advantage, of allowing the Tar file to be read by standard UNIX Tar
programs whilst also preserving file type information on the Archimedes. The
comma and file type string will not appear under RISC OS.

Tar files have a RISC OS file type (OxC46) and corresponding icon.

22

SparkFS Zoo, ARJ , LZH, PackdDir

8.Zoo

Whilst SEA and PKarc were shareware programs. Zoo was devised as a
completely public domain archive standard. Implementations exist for all the
usual hardware platforms, however the most common places to find Zoo fi les
are the Amiga and UNIX.

The original Zoo program used a slight variation on the standard UNIX LZW

technique , later versions have borrowed algorithms from LZH.

9. ARJ

ARJ (the name derives from the initials of the author Robert Jung) is the
latest standard to appear in the PC world. The main advantage of ARJ is
that it offers amongst the best data compression currently available.

10.LZH

The original inventors of the LZW algorithm were Lempel and Ziv. They
actually proposed two algorithms around the same time. One was the first to
be widely exploited in the LZW form. Their other algorithm took longer to
catch on , but its superior data compression , has made it the basis of all the
latest generation of data compressors. The first practical implementation was
by a group of Japanese enthusiasts. They made their data compressor into
an archive standard.

11 . PackdDir'

PackdDir is the name of an archive program written for the Archimedes by
John Kortinck. It's motivation, is to allow a directory structure to be rapidly
converted into an archive file. The compression algorithms used are a slight
variation on UNIX Compress - LZW with an adjustable number of bits.

23

McStuffit SparkFS

12. McStuffit

Introduction
The filing system on the Macintosh is novel, in that files consist of two
components or forks. The resource and data forks. There is a standard for
handling such files on non-Macintosh systems (or for sending them via
modem). A "Macbinary" file, consists of a 128 byte header, followed by the
data and resource forks.

The Macintosh also has its own type of binary to ASCII conversion - HQX or
BinHex. Files can be loaded in either HQX, Macbinary or Data fork form.
Only the latter two should have type Archive, the first is a text file.

The original Macintosh archive format was Packit. This is fairly primitive and
unsuitable for random file access. It uses Huffman data compression. By far
the most popular Macintosh format is Stuffit. This is broadly comparable to
SEA and PK arc, later versions add one of the LZH algorithms. The newest
format is Compactor. This is analogous to Zip.

*Commands
*McStuffitMode <mode>

The McStuffit module supports a * command, to decide if files should consist
of the resource, data or both forks. If the file consists of both forks, it will be
created in Macbinary format.

*McStuffitMode controls which file fork will be accessed. Possible values are
1 Resource fork 2 Data fork 3 Both 4 Longest.

Mode 4, makes whichever of the forks is biggest represent the file. This can
be useful when files have all the data of interest in varying forks, and nothing
in the other fork.

This command should be used before any Macintosh archives are opened.
Although changing the value at any other time will not of itself do any
damage, applications may find files larger or smaller than they think with
unfortunate consequences.

It is possible to set the mode value in an Obey file in the !SparkFS.AutoRun
directory.

24

SparkFS Appendix 1

Appendix 1 :Archive types

SPARK1 Spark files

SPARK2 2 Spark directories

PKARC 3 PK arc

ZIP 4 Zip

zoo 5 Zoo

LZH 6 LZH

TAR 7 Tar

AR CFS 8 ArcFS

ARJ 9 ARJ

PIT 10 Packit

SIT 11 Stuff it

SITD 12 Stuffit Deluxe

SITSX 13 Stuffit self extracting

COMP AC 14 Compactor

COMPACSX 15 Compactor self extracting

PACKD 16 PackdDir

25

Appendix 2 SparkFS

Appendix 2:Error Messages
SparkFS has filing system number &42

It gives the following errors

&014200

&014201

&014202

&014203

&014204

&014205

&014206

&014207

&014208

&014209

&01420A

&01420B

&01420C

&014200

&01420E

&01420F

&014210

&014211

&014212

&014213

&014214

Not enough free memory
Try using the Memory section of the choices dialogue box to
give SparkFS more memory.

Bad parameters passed internally

SparkFS does not support this command

Archive not found

Too many archives open
There are open files in too many different archives.

Can't handle this type of file

Bad archive

Archive already exists
You have tried to create an archive with the same name as a
file that already exists.

Name must start with!
Spark directory archive names must begin with a !.

Catalogue not found

Archive is read only

Corruption in compressed data

Bad compression method parameter

Bad number of bits parameter

Unsupported compression method

Unsupported number of compression bits

Bad encryption method parameter

Password too long

Password missing

Unsupported encryption method

Cannot create scrap file
Check the setting of Spark$Scrap. Ensure !Scrap is installed.

26

SparkFS

&014215

&014216

&014217

&014218

&014219

&014220

&014221

&014222

&014223

&014224

&014225

&014226

&014227

&014228

&014229

&01422A

&01422B

File is packed with a bad number of bits

No currently selected directory

No currently selected library

Error writing data

Error reading data

Not a compressed file

Bad Mac parameter

SparkFS memory corrupted

Unidentified header type found

Central directory offset inconsistent

Appendix 2

Central directory has an inconsistent number of files

Central directory has an inconsistent file offset

Central directory not found

End directory not found

Archive does not support this command

Too many files open

Bad image file handle

Standard Filing system error messages

&0142B4 Directory not empty

&0142BD Access violation

&0142C2 File open

&0142C3 Locked

&0142C4 Already exists

&0142C5 Types don't match

&0142CC Bad file name

&014206 Not found

27

Appendix 3

Appendix 3:SWI Calls
SparkFS supports a number of SWI calls.

#define FS_SWI Ox445CO
#define USERSWI (FS_SWl+S)

O - Identify archive
Entry
r0=0
r1 =archive path

1 - Read archive entries

Exit
rO=type

SparkFS

This is passed the path to an archive, and the path to a directory inside the archive . In addition a wild­
carded file name can be used .

Entry
r0=1
r1 -> archive path i.e. path to archive file on external FS
r2->buffer to write information to
r3= number of objects to write
r4= position in catalogue to start reading from
r5= size of buffer
r6->wild carded file name to match. Can be NULL to match all.
r7->path to directory inside archive

Exit
r4=position in catalogue to read from next
r3=number of entries written to buffer

Format of entry
offset
0
4
8
12
16
20
24
28

load address
exec address
length
size
header version
attributes
object type
object name

i.e. real uncompressed size
i.e. compressed size
loosely related to the compression method

1 =file, 2=directory
O terminated, padded with O's to word boundary.

Operation is similar in concept to OS_GBPB 1 O

#define LINKSWI (FS_SWl+O)

0 - Add new link
Entry
r0=0
r1->flink
r2->private workspace
r3=compatibility level

1 - Remove link
Entry
r0=1
r1 ->flink

28

SparkFS Appendix 3

#define MEMSWI (FS_SWl+1)

O - Allocate
Entry Exit
r0=0 r0=0 failed
r1 ->anchor
r2=size

1 - Extend
Entry
r0=1
r1->anchor
r2=size

2 - Free
Entry
r0=2
r1 ->anchor

3-Set

Exit
r0=0 failed

Exit

Entry Exit
r0=3 r1=min
r1 =min r2=max
r2=max r3=cur

#define INFOSWI (FS_SWl+2)

O - Archive Info
Entry Exit
r0=0 r1 ->archive structure
r1 -> archive pathname

1 - Module Info
Entry
r0=1
r1=n module number

#define CODESWI (FS_SWl+3)

0 - CRC 16 block

Exit
r0=0 no module, -1 no more modules
r1 ->archive info
r2->compression info
r3->code info
r4->convert info
r5->module base

Entry Exit
r0=0 r1 =crc out
r1=crc in
r2->block
r3=1ength

1 - CRC 32 block
Entry
r0=1
r1=crc in
r2->block
r3=1ength

2 - Open Encrypt
Entry
r0=2
r1 =type 1 ==Garble 2==DES
r2->password

r

Exit
r1 =crc out

29

Appendix 3

3 - Encrypt block
r0=3
r1 =type 1 ==Garble 2==DES
r2->block
r3=1ength

4 - Decrypt block
r0=4
r1 =type 1 ==Garble 2==DES
r2->block
r3=1ength

5 - Close Encrypt
r0=5
r1=type 1 ==Garble 2==DES

#define UTILSWI (FS_SWl+4)
O - Parent of directory
Entry
r0=0
r1 ->archive
r2=child

1 - Set no of files in directory
Entry
r1 ->archive
r2=no of files

2 - Insert entry
Entry
r0=2
r1 ->archive
r2=file number
r3=directory
r4=size

3 - Remove entry
Entry
r0=3
r1 ->archive
r2=file number
r4=size

4 - Map extension to type
Entry
r0=4
r1 ->extension

5 - Cale dir lens
Entry
r0=5
r1 ->archive

6 - Open scrap file
Entry
r0=6
r1 =mode

7 - Close scrap file
Entry
r0=7
r1 =handle

Exit
rO=parent

Exit
rO=file type

Exit
rO=handle

30

SparkFS

Bibliography

The Data Compression Book,
Mark Nelson, M&T Books 1991, ISBN 0-13-202854-9
A readable summary of the current state of play, with C source code for all
the standard methods and explanations of how they work.

Data Compression (methods and theory) ,
James A Storer, Computer Science Press 1988, ISBN 0-88175-161-8
Theoretical survey from one of the contributors to the field. Contains Pascp.I
source code for the methods discussed.

Text Compression ,
Timothy C. Bell, John G. Cleary and Ian H. Witten ,
Prentice Hall 1990, ISBN 0-13-911991-4
Excellent and readable survey of data compression, from some of the
pioneers in arithmetic coding. Covers the theoretical basis of all the current
techniques and provides comparisons of efficiency.

